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Abstract

Bl The prospect of reward changes how we think and behave.
We investigated how this occurs in the brain using a novel con-
tinuous performance task in which fluctuating reward expecta-
tions biased cognitive processes between competing spatial and
verbal tasks. Critically, effects of reward expectancy could be
distinguished from induced changes in task-related networks.
Behavioral data confirm specific bias toward a reward-relevant
modality. Increased reward expectation improves reaction time
and accuracy in the relevant dimension while reducing sensi-
tivity to modulations of stimuli characteristics in the irrelevant

INTRODUCTION

Money changes the way we think and behave. More
generally, the prospect of rewards including money in-
fluences cognitive processes such as attention, decision
making, and the configuration of mental “rules” that
determine our responses to events. This interaction
between cognition and reward expectation has an im-
portant influence on everyday thought and behavior,
even when the reward is predictable or subliminal
(Pessiglione et al., 2007). Conversely, abnormal inter-
actions may contribute to the development of gambling
and addictive behaviors (Tanabe et al., 2007; Reuter
et al., 2005; Goudriaan, Oosterlaan, de Beurs, & Van
den Brink, 2004; Bolla et al., 2003).

The neural basis of reward representation is often
presented as functionally and anatomically distinct from
the neural basis of configuration of cognitive or behavioral
rules (sets). For example, the representation of rewards
is closely associated with the orbital and medial frontal
cortex, the anterior cingulate, and the ventral striatum
(Shidara & Richmond, 2002, 2004; O’Doherty, Critchley,
Deichmann, & Dolan, 2003; O’Doherty, Kringelbach,
Rolls, Hornak, & Andrews, 2001), and lesions of these
areas impair goal-directed behaviors, especially in regard
to changing reward contingencies (Hornak et al., 2004;
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dimension. Analysis of functional magnetic resonance imag-
ing data shows that the proximity to reward over successive
trials is associated with increased activity of the medial frontal
cortex regardless of the modality. However, there are modality-
specific changes in brain activity in the lateral frontal, parietal,
and temporal cortex. Analysis of effective connectivity suggests
that reward expectancy enhances coupling in both early visual
pathways and within the prefrontal cortex. These distributed
changes in task-related cortical networks arise from subjects’
representations of future events and likelihood of reward. W

Bechara, Damasio, Tranel, & Anderson, 1998). In contrast,
cognitive set or “rule” functions are closely associated
with the lateral prefrontal cortex (Aron, Monsell, Sahakian,
& Robbins, 2004; Sakai & Passingham, 2003; MacDonald,
Cohen, Stenger, & Carter, 2000a; Rogers, Andrews, Grasby,
Brooks, & Robbins, 2000), and lesions of the lateral pre-
frontal cortex impair rule-based behaviors (Aron et al.,
2004; Manes et al., 2002; Dias, Robbins, & Roberts, 1997).

These lateral and ventral/medial systems must both
be active under conditions in which a change in cog-
nitive processes must arise from the representation of
goals or reward expectations. However, the nature of
the interaction between them is controversial, with two
alternative mechanisms. First, it has been proposed that
there is a global workspace within which decision-
making processes are modulated according to rewards
(Dehaene & Changeux, 2000; Dehaene, Kerszberg, &
Changeux, 1998). This hypothesis emphasizes an inter-
action within widely distributed rather than local brain
networks. In contrast, it has been proposed that the in-
teractions occur within local regions in the prefrontal
cortex. For example, monkey neurons in the lateral pre-
frontal cortex can encode specific combinations or re-
ward and behavioral response (Matsumoto, Suzuki, &
Tanaka, 2003; Wallis & Miller, 2003). In addition, medial
frontal neurons (including the anterior cingulate cortex
[ACC]) have been found to predict set-switching be-
havior under conditions of changing rewards (Williams,
Bush, Rauch, Cosgrove, & Eskandar, 2004; Shima &
Tanji, 1998).

Journal of Cognitive Neuroscience 20:11, pp. 1980-1992



Can these global and local models of the reward-
behavior interactions be reconciled? The answer is yes, if
there are specific interactions within distinct but widely
distributed brain networks. In other words, reward ef-
fects may modulate activity in local regions, but they
may also alter the nature of interactions (i.e., functional
connectivity) between widespread regions that form
task-specific processing networks. This type of func-
tional neural circuit model can be tested with functional
magnetic resonance imaging (fMRI), provided that the
brain activation related to rewards/reward expectations
can be distinguished from the activation related to task-
specific cognitive processing. Much of the evidence re-
garding reward—cognition interaction comes from studies
with uncertain reward contingencies or variable risk—
reward ratios in the context of gambling paradigms
(Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006; De
Martino, Kumaran, Seymour, & Dolan, 2006; Paulus &
Frank, 2006; O’Doherty et al., 2001; Elliott, Friston, &
Dolan, 2000). Less is known about how predictable re-
wards modulate the control of cognition or behavior.
During instrumental learning of rules, for example, the
ventral striatum correlates with reward prediction error
(Pessiglione, Seymour, Flandin, Dolan, & Frith, 20006).
However, under conditions where the rule is already
learned, and thus, reward levels are expected, there
should be no prediction error, hence, no activation of
the ventral striatum. This raises several questions. How
then do we control responses to achieve predictable re-
wards? Does the magnitude or proximity of expected
reward affect these cognitive control processes? How
does reward-based cognition control relate to the neural
mechanisms of rules and set when these are cued in
advance? These three questions were addressed in the
current study of healthy adults.

We investigated the effects of reward expectation on
rule-based cognitive processes using a novel variant
of the continuous performance task (AX-CPT) (Braver,
Barch, & Cohen, 1999; Beck, Bransome, Mirsky, Rosvold,
& Sarason, 1956). Human brain activation and connec-
tivity was examined during task performance with blood
oxygenation level-dependent (BOLD) fMRI. The task re-
quired simultaneous monitoring and target detection in

both the spatial and verbal dimensions of visually pre-
sented stimuli pairs (see Figure 1). In addition, rewards
were given whenever three successive targets in a given
dimension were correctly identified. Consequently, each
successively detected target in a given dimension in-
creased reward expectancy, and potentially increased
the cognitive set bias toward that dimension. Critically,
the reward expectancy and bias are orthogonalized,
enabling a clear separation of the activations related to
reward expectation from the activations related to the
biased implementation of one or other cognitive sets.

Using Statistical Parametric Mapping (SPM) of regional
brain responses, we tested three specific hypotheses.
First, that increasing expectation of reward across succes-
sive trials would be associated with activation of the me-
dial prefrontal cortex, including the most rostral part of
the ACC; no activation was predicted in the ventral stria-
tum due to the predictable nature of the reward contin-
gency. Second, when reward expectancy was linked to
a bias toward the spatial dimension, there would be
greater activation in a spatial processing network, includ-
ing the superior frontal sulcus (SF) and the intrapari-
etal cortex (IP) (Sakai & Passingham, 2003; Corbetta,
Kincade, & Shulman, 2002). Third, when reward ex-
pectancy biased the verbal dimension, there would be
greater activation of a verbal processing network includ-
ing left Brodmann'’s area 45 (PFv) and the fusiform gyrus
(FG) (Sakai & Passingham, 2003; Fujimaki et al., 1999).
We also predicted that bias in verbal and spatial dimen-
sions would be associated with specific changes in cortico-
cortical connectivity within and between the verbal and
spatial processing networks. This last hypothesis was
tested using dynamic causal modeling (DCM) within a
distributed network of frontal, parietal, and temporal
brain regions.

METHODS
Behavioral Tasks

The task was based on the AX-continuous performance
task (Braver et al., 1999; Beck et al., 1956), but included
letter stimuli that were defined both by their location

Figure 1. The task comprised

successive letters at different 1st 2nd 3rd 4th 5th_trial pair...
locations, with a pair of letters A . x F . F .
forming a given trial. Each trial X F A

could be a target (called “AX’") T T T T T T T T T >
in either a spatial (AXgpatiar: 0 0.9 25 50 59 75 84 10 109 sec
any letter at 6 o’clock then

3 o’clock) or verbal (AXepar: Trial Types:

letter A then X) dimension, Verbal Target Spatial Target Verbal Target Non-target Non-target

or C()Uld be a nontargct AxverbalBYspatlal BYvevba\Axspat\al Axverha\AYspat\a\ BYverbalBYspatlal BYverbalespaNal

(“non-AX"). Nontarget trials

might include a target-relevant precue (AY) or a response cue (BX) or neither (BY) in one or other dimensions. For a target trial in one
dimension, there may nonetheless be target-relevant information in the other dimension. In the example shown, the first trial is a target

defined as * ‘AX\'erbalBYspal al:”
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(eight positions, in a circle, radius 1.5°, white on a gray
background) and letter identity (one of eight capital
letters). Stimuli were presented sequentially in pairs,
each pair comprised a precue and a response cue to
form a single trial. Stimuli were presented for 300 msec,
with an interval of 600 msec. Trial onset asynchrony was
2500 msec.

Trials were either target or nontarget trials. Target
trials require that both the precue and the response cue
are the specific stimuli that are taught to be associated
with targets. There is a target-associated precue called
“A,” and a target-associated response cue called “X.”” All
other precues are not associated with targets and are
collectively known as “B.” All other response cues are
not associated with targets, and are collectively known
as “Y.” Therefore, for any stimulus dimension, the pair
of stimuli that make up a trial gives rise to four formal
trial types: AX, AY, BX, BY. It should be noted that a
verbal “AY” trial does not necessarily present the letter
“y” as the response cue but any letter that is not the
target-associated response cue. This formal notation is
applicable to the verbal and spatial dimensions: It
should be noted that spatial “AX” trials do not neces-
sarily present the letters “a’” and “x” but may present
other letters in the spatial positions that are associated
with a target in the spatial dimension.

Target trials were defined in the verbal dimension by
the letter “A” followed by the letter “X,” appearing
in any locations. Target trials were defined in the spa-
tial dimension by letters appearing at 6 o’clock then
3 o'clock. A double target (i.e., an A at 6 o’clock fol-
lowed by an X at 3 o’clock) was never presented, al-
though target trials could include an ambiguous precue
(the letter “A” at 6 o’clock) or an ambiguous response
cue (the letter “X” at 3 o’clock). Thus, the target di-
mension and the nontarget dimension can be defined
for each trial. All target trials can be denoted “AX”’ trials.
In contrast, the nontarget dimension can be described
by one of three forms: AY, BX, BY. B denotes any precue
that is not associated with the targets. Y denotes any
response cue that is not associated with targets.

We add a suffix to each trial descriptor in order
to indicate the dimension for each type of trial (AX,
AY, BX, or BY). For example a trial containing an F at
6 o’clock, followed by a T at 3 o’clock is defined as an
AXparialBYverbar trial (see Figure 1 for further examples).
Some trials contained no target-relevant information.
Such BYpaiaiBYverbar trials are also termed neutral trials.
Trials in which a target pair was not presented (i.e.,
nontarget trials) may, nonetheless, contain some spatial
or verbal cues that are associated with targets (i.e., an
“A” or “X” or a stimulus presented at 6 or 3 o’clock).
These trials may also be classified as AY, BX, or BY trials
for either dimensions as above.

Overall, 33% were spatial targets (AXspaal), 33% were
verbal targets (AXyema), and 33% of trials were nontar-
gets. Subjects indicated whether a trial was a target or a
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nontarget by pressing their right index or middle finger,
respectively. An audible click acknowledged their correct
button press. Subjects were instructed that successful de-
tection of three sequential targets within a given dimen-
sion would lead to a monetary bonus, and thus, should
be a priority in performance. Rewarded trials were each
associated with a 10-pence bonus (paid after scanning)
and a salient cash register sound (‘“‘ka-ching”).

A permuted trial sequence was used, such that the
probability of a trial being a target or nontarget, in the
spatial or verbal dimension, depended on the combina-
tion of the previous two trials. This increased the fre-
quency of consecutive target repetitions (21% of trials
were a second target in a given dimension and 10% of
trials were a third target in a dimension) while preserv-
ing the subjective unpredictability of forthcoming trial
types among naive participants. A new target trial in
one dimension sets the current progress toward reward
to Level 1, increasing to 2 then 3 with each successive
target trial. Three successive targets in the same di-
mension defined a rewarded trial. A rewarded trial was
always followed by a nontarget trial (to avoid potential
postreward refractory effects).

In the main experiment, 28 subjects (mean age =
24 years, range = 19-36, 12 women) were pretrained
first with each trial type separately, then with 120 inter-
mixed trials. They then performed 441 trials during fMRI
scanning. Short rest blocks, 14 sec, were included after
every 14-18 trials. The timing of rest intervals varied to
avoid splitting a sequence of target trials.

The presentation of data was controlled using Cogent
2000 software (www.vislab.ucl.ac.uk/Cogent2000) using
Matlab 7.1 (www.mathworks.com) in Windows XP
(www.microsoft.com). Reaction time (RT) to presentation
of the second stimulus and the accuracy of target detec-
tion were recorded. RT and arcsin-transformed accuracies
were analyzed in SPSS 11.0 (SPSS, Chicago). Repeated
measures analyses of variance were performed both on
the accuracy and RT data. For the analyses of variance,
target trial types (nontarget, first AX, second AX, third
AX) and nontarget trial types (BY, BX, AY) for each di-
mension (spatial and verbal) were within-subject variables.

A separate behavioral experiment was performed
prior to scanning (see Supplementary Material). In ad-
dition to replicating the main results, this behavioral
experiment showed that key behavioral effects are en-
hanced by explicit financial reward for successful target
detection, as used in the magnetic resonance imaging
(MRI) experiment. Thus, the behavioral data validate
the use of reward expectancy as a means of inducing
endogenous (i.e., uncued) sources of cognitive set bias.

MRI Data Acquisition and Analysis

A Siemens Tim Trio 3-Tesla scanner was used at the Med-
ical Research Council’s Cognition and Brain Sciences
Unit, Cambridge. fMRI used BOLD-sensitive T2*-weighted
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EPI images (TR = 2000 msec, TE = 30 msec, FA = 78°)
with 32 slices, 3.0 mm thick, in-plane resolution 3 x 3 mm,
with slice separation 0.75 mm, in sequential descending
order. A total of 780-810 images were acquired for each
subject, the first six of which were discarded to allow for
steady-state magnetization. Subjects also underwent high-
resolution magnetization prepared rapid gradient echo
(MP-RAGE) scanning (TR = 2250 msec, TE = 2.99 msec,
FA = 9°, IT = 900 msec, 256 x 256 x 192 isotropic 1 mm
voxels) and single volume TSE (TR = 5060 msec, TE =
102 msec, FA = 140, 28 x 4 mm slices) for the purposes
of normalization of images, localization of activations on
individual and group brains, and assurance of structural
normality. Temporary technical problems introduced fre-
quent artifacts in the fMRI data for eight consecutive sub-
jects: These subjects’” MRI data were therefore excluded
prior to preprocessing.

Data analysis used SPM5 (www. fil.ion.ucl.ac.uk/spm)
in Matlab 7 environment (R14, Mathworks, CA). fMRI
data were converted from DICOM to NIFTII format, spa-
tially realigned to the first image, and sinc interpolated
in time to the middle slice to correct acquisition delay.
The mean fMRI volume and MP-RAGE were coregis-
tered using mutual information, and the MP-RAGE seg-
mented and normalized to the Montreal Neurological
Institute T1 template in SPM by linear and nonlinear
deformations. The normalization parameters were then
applied to all spatio-temporally realigned functional im-
ages, the mean and structural images, prior to spatial
smoothing of fMRI data with an isotropic Gaussian
kernel full-width half-maximum 10 mm.

First-level statistical parametric modeling for each sub-
ject used a general linear model with one regressor rep-
resenting the presentation of a trial (of any type). This
was subject to parametric modulation according to the
degree of reward expectation (0, 1, 2, or 3); bias (0 for
neutral; 1, 2, or 3 for increasing bias toward spatial di-
mension; —1, —2, or —3 for increasing bias toward ver-
bal dimension). Nontarget trials reset the reward and
bias covariates to zero. The bias and expectancy values
were also reset by a new target trial in a different di-
mension, thus overwriting any opposite bias established
by targets in the other dimension in previous trials.
Therefore, there was no permitted overlap in bias to
the competing dimensions. We did not model the differ-
ences in trial type in the nontarget dimension or differ-
entiate the different types of nontarget trials.

In addition, covariates were included to indicate re-
warded trials. In this way, the neural correlates of reward
expectation can be distinguished from the neural cor-
relates of rewarded trials. We also included separate
regressors for error trials whether errors of omission or
commission; and regressors expressing the “target re-
set” trials described above for which there was reversal
of the biased dimension, and thus, an extradimensional
shift of attention (e.g., a first spatial target AX-spatial
followed by a first verbal target AX-verbal). The first-level

model also included the RT for the trials as a regressor
(msec), enabling the estimation of effects of expectation
and bias without their being confounded by the poten-
tially different RTs between trials of high expectation or
bias. These covariates constitute ‘“‘effects of interest” in
the SPM.

The first-level model also included regressors represent-
ing occasional movement events and radio-frequency
artifacts if they were detected by in-house image quality
control software (typically 0-5 such events per subject).
These regressors were considered “effects of no inter-
est.” Such single-scan regressors effectively remove these
images from the estimation of parameters for the covar-
iates of interest. The model also used a high-pass filter
with a cutoff of 128 sec, and AR(1) modeling of temporal
autocorrelations. Contrast images for each effect of inter-
est were made for entry to second-level analyses.

Second-level models (random effects) for each effect
of interest were made using one-sample ¢ tests of the
contrast images from each subject’s analysis at the first
level. Given the similar design of first-level analyses,
this two-step approach is equivalent to a mixed effects
analysis incorporating within- and between-subjects var-
iance. SPM(#) maps were generated for each effect of
interest, thresholded such that the false discovery rate
(FDR) was 0.05 for whole-brain comparisons. In view
of our hypothesis regarding bias toward the verbal di-
mension, the contrast of verbal bias at the second level
was subject to a second threshold, correcting for multi-
ple comparisons within an anatomically defined prespec-
ified region of interest. This region included the left
Brodmann’s area 45 maximal probability map (Amunts
et al., 2004) combined with the left fusiform gyrus,
drawn according to anatomical landmarks using MRIcro
(www.mricro.com).

Analysis of Effective Connectivity

To understand the changing pattern of connectivity
across the brain that mediated the behavioral and re-
gional activation effects, we used DCM of fMRI data
(Friston, Harrison, & Penny, 2003). The rapid event-
related design of this experiment makes it well suited to
DCM (analysis of interactions between the neural pro-
cesses estimated from the deconvolution of the BOLD
MRI signal) but unsuitable for structural equation mod-
eling or psychophysiological interactions (PPIs) ex-
pressed in general linear models. DCM models include
all data points spanning all trial types to optimize the
simultaneous solution for all coupling parameters, mod-
ulatory bilinear parameters, and hyperparameters deter-
mining the BOLD response to neural activity.

DCM permits analysis of changes in brain network con-
nectivity, in terms of bilinear effects or moderator terms
that express the psychological context within which phys-
iological interactions mediate task performance. It is a
hypothesis-driven approach, testing specific effects within
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defined neuroanatomical networks. To construct a DCM,
one must determine the regions of the putative network;
the permitted connections between them; the region(s)
through which the network is perturbed during trials;
and the paths in which there is differential coupling ac-
cording to the context.

The Regions

For our models, fMRI time series from seven regions of
interest were extracted for each subject. Specific coor-
dinates were selected from activation foci from second-
level SPM analyses of reward expectancy, verbal bias,
spatial bias, and all-tasks-versus-rest. Regions were cen-
tered on: —50, 38, 8 (ventral lateral prefrontal cortex
[PFv] within maximal probability map for area 45); —46,
28, 22 (dorsal lateral prefrontal cortex [PFd], area 46);
—8, 44, 4 (medial frontal cortex [MF], area 24); —20, —2,
54 (superior frontal sulcus [SF], area 8); —30, —90, 0
(prestriate [PS], area 19); —38, —62, —20 (fusiform gy-
rus [FG]); and —14, —52, 54 (intraparietal cortex [IP],
area 7). Time series were based on the mean of voxels
from spheres 7 mm radius which exceeded p < .05 for
an F test of all effects of interest. Time series were ad-
justed for all experimental effects of interest, preserving
noise but removing the effects of specified spikes or
movement artifacts. Two subjects showed no significant
activation in one or more specific regions and were
therefore excluded from further network modeling.

The Connections

There is insufficient evidence of direct and reciprocal
connections from human neuropathology alone to val-
idate the anatomical connectivity of most models. How-
ever, there is evidence from the macaque, if one accepts
functional and connectionist homologies associated with
cytoarchitectonic homology. With recent MRI evidence
of such functional homology in many, if not all, parietal
and prefrontal regions (Nieder & Miller, 2004; Orban, Van
Essen, & Vanduffel, 2004), we used macaque-based data
to support our anatomically constrained dynamic causal
model (Www.cocomac.org).

The Driving Input to the Network

Within DCM models, brain regions usually change their
activity only in response to inputs from other brain re-
gions, not as a direct result of external events. Excep-
tions include sensory regions that are subject to external
influences. Task-related activation propagates through-
out the network from such sensory regions, following
visual stimulation, perturbing a network which would
otherwise return gradually to a steady state. This initial
perturbation of the network was modeled by task event
stimulations of the prestriate cortex using a covariate
expressing all trial types’ events (DCM external influ-
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ences matrix C: sometimes termed “injection” of per-
turbation into the network).

The Bilinear Effects

Differential propagation of task related activation may
occur under different trial types or contexts. Such dif-
ferential propagation is specified within a DCM as path-
ways for which the connectivity time-constants were
permitted to vary according to spatial or verbal bias
(known as bilinear effects, defined by DCM matrix B,
expressing a PPI; see Figure 4). Two bilinear effects ex-
pressed verbal bias and spatial bias, respectively.

To study the group connectivity, we employed a
second-level analysis of the dynamic causal models.
This used the Bayesian model ‘“averaging” approach
in SPM5 to compute the posterior mean and precision
from the whole group for all connectivity parameters.
The posterior mean of a connectivity parameter from
previous subjects is used as the prior for the next sub-
ject. The posterior mean is a weighted combination of
the prior mean (following previous subjects) and the
likelihood (datum from current subject), where the
weighting is given by the relative precisions (inverse
variance/covariances) of the prior and the data. This
is not necessarily the arithmetic mean of parameters
across subjects because of possible covariance among
parameters, but does represent the most likely value
given the data.

The results of the group DCM are presented as con-
nection weights (given by the time constants in Hz) for
intrinsic connections and bilinear moderators for which
there was a high confidence (>90%). Positive effects
were tested post hoc by a one-sample two-way ¢ test of
single-subject values for a bilinear time constant with the
null hypothesis that the mean was zero. A positive value
for an intrinsic connection indicates that the source
region causes an increase in activity in the target region
(per unit source activity per unit time). A positive value
for a bilinear connection indicates that the psychologi-
cal variable, say spatial bias, is associated with an in-
crease in connectivity between two regions, such that a
unit of activation in the source regions causes a greater
increase in activity in the target region per unit time.

It would be impossible to conduct a comparison of
all ~10" models that could be constructed from our
seven regions and two moderator variables, with feed-
forward and/or feedback connections. Therefore, we in-
stead assessed four nested plausible models based on
the same anatomical connectivity, but with different
bilinear effects representing different patterns of PPIL
The models included the same anatomical regions and
time series, and the same intrinsic connectivity. How-
ever, the models differed in terms of the possible ways
in which connectivity changed according to the con-
text of each trial (defined by the bias induced by reward
expectation).
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The different models were computed for which: (a)
Verbal bias may modulate connections between PS, FG,
PFv, and PFd, and between PFv and IP, whereas spatial
bias may modulate connections between PS, IP, SF, and
PFd, and between PFv and IP, illustrated in Figure 4 and
Supplementary Figure S1; This was the model most sup-
ported by the evidence of the data. Of note, the con-
nections of the MF are of constant strength, although it
should be recalled that the activity in this region varies
with reward expectation enabling a variable influence
on target regions even with fixed connectivity. (b) All
connections, except those to or from the MF, are modi-
fiable by verbal and/or spatial bias; This model is more
flexible by allowing independent effects of each bias on
any connection. However, it requires more degrees of
freedom to do so. (¢) Like model a, but with additional
permitted modulation of all connections of the MF by
spatial and/or verbal bias. This third model allows a
second means by which the MF could alter activity in
its target regions: by increased activity within the re-
gion and/or increased effective connectivity to target
regions. (d) Like model b with independent effects of
each bias type on each connection, including permitted
modulation of all connections of MF by spatial and/or
verbal bias. This model is most flexible, but may be less
likely if it is overspecified for the data.

To summarize the four models, models ¢ and d allow
variable connections of the MF cortex, whereas models a
and b do not. Models b and d allow both spatial and
verbal bias to modulate the strength of all task-processing
connections, whereas models a and c differentiate those
connections that can be modified by verbal bias from
those that can be modified by spatial bias.

Reward expectation entered the DCM vicariously, as
permitted joint bilinear effects of spatial and verbal biases,
and as regional activation of the MF. Akaike’s Informa-
tion Criterion and Bayesian Information Criterion values
were used to compute Bayes Factors (BF) for the relative
evidence in favor of one model versus another (Penny,
Stephan, Mechelli, & Friston, 2004b), assuming each
model had equal a priori probability.

RESULTS
Behavioral Results

There was clear behavioral evidence for graded cognitive
set shift toward reward-relevant dimensions (Figure 2).
For both verbal and spatial dimensions, performance
was improved when the current trial was a target in a
biased dimension, and was further improved according
to the number of previous targets in that modality, in
terms of both faster RTs [RT-spatial: F(3, 25) = 37, p <
.001; verbal: F(3, 31) = 30, p < .001; see Figure 2] and
greater accuracy [Acc-spatial: F(3, 25) = 39, p < .001;
verbal: F(3, 25) = 43, p < .001]. Overall accuracy across
scanned subjects was 97.5% (SD = 0.02; mean arcsin
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Figure 2. The top panel shows reaction times (mean RT *+ SE)

to spatial and verbal trials according to whether they were nontarget
trials (neutral BY trials, with neither first nor second letter/location
associated with a target) or contained a first, second, or third
successive target (AX) in the relevant dimension. The lower panels
show RTs to each type of stimulus pair, according the position in
a succession of targets (BY in target dimension, first target AX,
second target AX, third target AX) separated according to the
modulation of trial types in the nontarget dimension (BY, BX, AY).
Subjects became faster with increasing reward expectation, and
also insensitive to modulation of the nontarget dimension.

accuracy = 1.35, SD = 0.07). Accuracy increased with
target repetition. For first, second, and third targets, ac-
curacy rose from 96.5% to 99.2% and 99.2%, respectively
for spatial targets, and from 95.0% to 98.6% to 99.2%,
respectively, for verbal targets.

Importantly, the subjects were not merely more gen-
erally attentive to the stimuli, but their attention became
selective for one dimension with diminishing sensitiv-
ity to trial-type differences in the alternate modality. For
example, the effect of expectation the trial precue led to
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an expectation of a target in the other dimension (AY),
interacted with the type of trial in the nontarget di-
mension (AY, BX, BY) [RT-spatial: F(6, 22) = 9.4, p <
.01; RT-verbal: F(6, 22) = 3.4, p < .01]. Thus, when a
target trial had not been preceded by previous targets,
performance was slower when compared to when the
precue did not lead to such expectations (BX, BY).
However, as the number of previous targets in a given
dimension increased, the effect of the precue in the
other dimension diminished, as indicated by a signifi-
cant interaction between the number of previous targets
and the trial type of the nontarget dimension for both
spatial and verbal targets. These behavioral effects were
diminished when the task was performed under non-
rewarded conditions, suggesting that reward expectancy
modulated attentional control in task-specific processing
networks (see Supplementary Results).

Neuroimaging Results: Regional Activations

Analysis of regional activations revealed by fMRI con-
firmed that increasing expectation of reward across suc-
cessive targets was associated with increased activation
of the medial frontal lobe including the cingulate cortex
(peak —8, 44, 4,1 = 5.82, FDR < 0.01, cluster 488 voxels)
and bilaterally in the superior temporal gyrus (peak 48,
—18, 8, ¢t = 6.73, FDR < 0.01, cluster 1204 voxels; peak
—50, —20, 4, t = 6.27, FDR < 0.01, cluster 974 voxels)
(see Figure 3A). The activation of this anterior cingulate

region is comparable to the single-cell neuronal acti-
vation observed with increasing reward expectancy in
monkeys (Shidara & Richmond, 2002) and correlation
with reward value in humans (O’Doherty et al., 2001).
It has been suggested that in the context of task switch-
ing paradigms, rostral cingulate activation is related to
processing response conflict (Swainson et al., 2003).
However, in our paradigm, reward expectation is asso-
ciated with reduced conflict between spatial and verbal
processes.

When the reward expectancy leads to a bias toward
the spatial dimension, we predicted greater activation
in a dorsal network including the superior frontal sul-
cus (SF) and the intraparietal cortex (IP), and when the
verbal dimension was biased by reward expectancy, we
predicted greater activation in a ventral network. These
predictions were confirmed as shown in Figure 3B and C
(details in Supplementary Table S1).

A possible explanation of the activations associated
with spatial bias is that there were differential eye move-
ments between conditions. Although we were unable to
record eye movements, we feel that this explanation
is inadequate. The caudal prefrontal activation of spatial
bias lies anterior to the usual location of the frontal cen-
ter for control of saccades (Petit, Clark, Ingeholm, &
Haxby, 1997). The cortex adjacent to this region has a
reported role in the control of target selection (Schall,
2002) or spatial working memory (Curtis, Sun, Miller, &
D’Esposito, 2005), consistent with an attentional set bias

Figure 3. SPM(?) maps of
regional activations associated
with different conditions: (A)
increasing reward expectancy
in the left medial frontal cortex
including the rostral ACC

(BA 24/32); (B) increasing
verbal bias in the ventral
lateral frontal cortex (BA 45);
and (C) increasing spatial

bias in the superior frontal
sulci (BA 8) and the
intraparietal cortex. SPM(#)s
are thresholded at FDR

p < .05 and are superimposed
on the group-average
MP-RAGE structural image,
with contrast-specific color
bars corresponding to ¢ values.
(D) Single-subject (#17)
BOLD data from three voxels
of peak activation in the
medial frontal cortex, the
intraparietal cortex, and the

ventral prefrontal cortex

peaks (solid lines), on trials for which there was verbal or spatial bias to a low (1), middle (2), or high (3) degree. Trials of low and medium
bias were included for these plots if they were not followed by a subsequent trial of greater bias. Data shown are averaged BOLD signals

6 sec after the onset of trials (expected peak the delayed BOLD response), adjusted only for spike and movement artifacts. Linear regression
estimates are shown in dotted lines, split for the medial frontal data according to verbal and spatial bias. (i) The medial frontal cortex is more
active for trials in which there is higher bias to either modality, indicating greater reward expectancy. (i) Ventral prefrontal activity is higher
with verbal bias. (iii) Parietal cortical activity is higher for trials with spatial bias than verbal bias.
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without additional eye movements. Bias toward the
verbal dimension increased activation associated with-
in the cytoarchitectonically defined Brodmann’s area 45
(Amunts et al., 2004). Verbal bias was also associated
with activation of the fusiform gyrus, which may include
a “word form area” (Price, Wise, & Frackowiak, 1996)
that responds to letters and letter strings more than
digits, nonletter patterns, or symbols.

Neuroimaging Results: Changes in
Effective Connectivity

The most likely one of the tested DCM models included
the dorsolateral prefrontal cortex (PFd, area 46). This
region was proposed because of its previous associa-
tion with cognitive set formation (Dalley, Cardinal, &
Robbins, 2004; Sakai & Passingham, 2003; MacDonald
et al., 2000a; Rogers et al., 2000), despite the lack of ac-
tivation in the analysis of regional activation above. In-
trinsic connections were modulated by graded spatial or
verbal bias, expressed by the bilinear components of the
model (DCM matrix B). Figure 4 presents the model
which had the highest posterior probability in all 18
subjects by Bayes Information Criterion and the highest
probability in 16 subjects by Akaike’s Information crite-
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Figure 4. The network shows bilinear effects representing
psychophysiological interactions in the preferred dynamic causal
model that included the medial frontal (MF) cortex, the dorsal
(PEd) and ventral (PFv) lateral prefrontal cortex, the superior
frontal sulcus (SF), the intraparietal cortex (IP), the fusiform

gyrus (FG), and the prestriate cortex (PS). Values given are time
constants (Hz) for the bilinear influences for which the group
posterior mean was positive (solid lines) or negative (dashed lines)
for verbal bias (thick green), spatial bias (thick red), or both (thick
black). These bilinear effects have strong evidence that they are
nonzero, corresponding to Bayes factor >20 [ p(model |data) >
95%]. Post hoc ¢ tests confirmed the group mean bilinear effect
was greater than zero for the connections between PS and FG

@t =23,df =17, p < .05) and between PFd and SF (z = 2.3,
df = 17,p < .05).

rion. This suggests that it is the most likely model given
the data. All intrinsic connections (matrix A) were sig-
nificant (Supplementary Figure S1) and mostly positive.
Visual presentation of trial stimuli modulated prestriate
cortex connectivity in a positive direction, as expected
(matrix Cyias 1o ps = 0.06, p = 1.000).

The network model revealed a clear pattern of
changes in connectivity resulting from bias induced by
reward expectancy. Bias toward the verbal dimension
was associated with stronger connectivity from the pre-
striate cortex to the fusiform gyrus (Figure 4). Although
a feedforward connection, the facilitation of its connec-
tivity is likely to be due to top—down mechanisms of
cognitive control, in view of the constant nature of the
stimulus properties. There was also enhanced reciprocal
connectivity between the PFv (area 45) and the PFd
(area 46) but reduced reciprocal connectivity with the
intraparietal cortex (area 7). It is interesting to note that
despite stronger connectivity in the early visual pathway,
and between frontal cortical regions, there was reduced
connectivity in the intermediate stage between the fusi-
form gyrus and the PFv. Bias toward the spatial dimen-
sion was associated with an analogous effect of stronger
local connectivity within the dorsal stream, with both
feedforward facilitation of the connection from the pre-
striate cortex (area 19) to the intraparietal cortex (area 7),
and greater reciprocal connectivity between the superior
frontal cortex (area 8) and the PFd (area 46) as illustrated
in Figure 4. There was a reduction in connectivity be-
tween the parietal cortex and its connections in the PFv
and the SF.

In the preferred model, there was no change in the
modulatory connections between the ACC and the tar-
gets of its projections. This does not imply that there is
no change in influence of the anterior cingulate with
reward expectations. This highlights the complementary
insights gained by connectivity models and standard
analyses of regional effects. DCM seeks to explain re-
gional effects in terms of changing patterns of connec-
tivity in a network that is perturbed by an experimental
event. Recall that there is increased activation of the
anterior cingulate with increasing reward expectation.
With fixed connection strengths, greater activity at the
source will lead to greater activity at the targets. In our
case, increasing activity of the rostral cingulate would
lead to greater activation of the ventral prefrontal cortex
and the intraparietal cortex. It may help to think of an
electrical circuit analogy, in which a higher voltage leads
to a stronger current across a connection even if the
conductance/resistance of the connection is unchanged.

A second difference is illustrated by the role of the
dorsal lateral prefrontal cortex. This was not identified
by the main SPM contrast of “‘all trials versus rest” but it
does have changes in connectivity with cognitive bias in
the DCM analysis. This is because a region with no net
activation following the network perturbation (by SPM
contrasts of differential activation between conditions
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in a group) may, nonetheless, have significant afferent
connection. Differential connectivity without differen-
tial activity has been noted in other connectivity analyses
using DCM, structural equation modeling, and PPIs within
general linear models (Sonty et al., 2007; Stephan et al.,
2003; Rowe et al., 2002). In our DCM model, the areas 45
and 8 had opposing influences on area 46, which may
have reduced the net regional activation of area 46.

DISCUSSION

The novel AX-CPT task enabled us to study how the
proximity to reward over successive trials led to tran-
sitions between verbal and spatial cognitive sets. Sub-
jects were able to accurately monitor the stream of visual
stimuli for targets determined by two concurrent rules.
We propose that a key aspect to proximity to reward
in the current design is the expectation of reward (cf.
Shidara & Richmond, 2002). The behavioral data confirm
that such reward expectation over three successive tar-
gets enhanced speed and accuracy of responses due to
a specific enhancement of the relevant cognitive set.
This cognitive set bias was not caused by a separate rule
cue prior to the trial stimuli, but was due to informa-
tion implicit in the trial stimuli themselves. Moreover,
the bias was not dichotomous, but represented a con-
tinuum between two contrasting rules.

The key feature of this task, in contrast to previous
studies, is that it successfully dissociated the correlates
of expectation of rewarded trials from the resulting
changes in cognitive set. As predicted, the two cognitive
sets had distinct neural substrates characterized by spe-
cific changes in regional activation and connectivity.
The balance between these two spatial and verbal sets
was governed by the reward expectation, that is to say,
the proximity to reward across successive trials. With-
in the frontal lobe, this goal expectation was encoded by
the medial frontal cortex, including the most anterior
part of the cingulate cortex.

Changes in Brain Activation

These fMRI results explain how subjects continuously
adapt the bias between cognitive sets according to the
expectancy of reward as represented in the medial
frontal cortex. The effects of reward expectation were
seen in interconnected regions of the dorsal and ventral
lateral prefrontal cortex. These changes are similar to
those that follow explicit advanced categorical task cues,
but which convey no information about reward (Sakai
& Passingham, 2003, 2006). It is probable that these
changes include activity of the class of prefrontal neu-
rons that has been shown to encode specific combi-
nations or reward and behavioral response (Matsumoto
et al., 2003; Wallis & Miller, 2003).

There were additional changes in a wide set of lateral
brain regions beyond the frontal lobes. Although these
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were distributed changes, our results do not suggest
a ‘“‘global workspace” (Dehaene & Changeux, 2000;
Dehaene et al., 1998) for the integration of expected re-
wards with the cognitive strategies necessary to achieve
them. Rather, specific changes in activation occurred in
distinct dorsal and ventral networks according to the
appropriate task bias. Such sensitivity to reward has
also been found in the extrastriate cortex in the context
of working memory (Krawczyk, Gazzaley, & D’Esposito,
2007).

Our paradigm differs from previous studies of rule or
set based behaviors. First, the set bias induced by re-
ward expectation need not have improved performance
on subsequent trials. For example, approximately 10%
of trials were rewarded (three targets in a row in one
dimension), but there were also 10% to 14% reversal
events in which a target in the unbiased dimension was
presented (brain activation related to reversal events is
described in the supplementary material). Failure to
respond correctly on this reversal trial could prevent
one receiving the next reward. Thus, the strategy of in-
creasing attentional bias on the basis of proximity to
reward is only one possibility that participants may have
adopted to optimize reward accumulation. Nevertheless,
it is likely that this strategy may have been the default
because target presentation in one dimension automat-
ically increases the salience of that dimension. This in-
creased saliency may have been further reinforced by
the parallel increase in proximity to reward.

A second important difference is the graded or pa-
rametric modulation of bias toward one or other set,
rather than the simple dichotomy invoked by cued set
paradigms (Sakai & Passingham, 2003; MacDonald et al.,
2000a2). This is evident in raw data plots from individual
subjects following each trial type (Figure 2D). A third
difference is that the cognitive bias toward a rule is es-
tablished without separate rule cues. In previous stud-
ies, a specific cognitive set is often established by cueing
of the rule (Crone, Wendelken, Donohue, & Bunge, 2006;
Bunge, 2004; Sakai & Passingham, 2003; MacDonald,
Cohen, Stenger, & Carter, 2000b). Such cueing may occur
in daily life (imagine sitting at the traffic lights when the
amber light comes on) but it is often not the case.

These earlier studies left open the question of how
the different regions of the prefrontal cortex interact to
produce rule-guided behaviors in the absence of sepa-
rate or advanced rule cues. One possibility is that the
same regions encode goals and rules. For example, in
the lateral prefrontal area 46, there are neurons that en-
code abstract rules (Wallis, Anderson, & Miller, 2001)
and also neurons for which spatial working memory
related activity is enhanced by reward expectations
(Tsujimoto & Sawaguchi, 2004; Leon & Shadlen, 1999).
Alternatively, a functional link between medial/ventral
prefrontal reward systems and lateral rule/set systems
could arise if both systems contribute to, and draw from,
a shared distributed “‘global workspace” (Dehaene &
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Changeux, 2000; Dehaene et al., 1998), which may in-
clude an activated cingulate cortex during goal-oriented
rule-based tasks (Landmann et al., 20006). A third possi-
bility is that there exist distributed changes in the spe-
cific brain networks mediating different aspects of the
task. For example, in a gambling-task context, the cou-
pling between the orbital and lateral prefrontal cortex
increases on trials that have increased risk and reward
(Cohen, Heller, & Ranganath, 2005). Our results support
the latter possibility, but such a connectionist hypothesis
cannot properly be tested by classical imaging analyses of
regional specialization. Instead, a connectionist hypothe-
sis calls for a formal analysis of brain connectivity.

Changes in Brain Network Connectivity

We therefore went on to determine the changes in
brain network connectivity associated with reward ex-
pectancy. Our analysis approach utilized DCM (Friston
et al.,, 2003) to determine the presence of task-induced
changes in effective connectivity. There were clear alter-
ations in effective connectivity in the dorsal and ven-
tral streams. These were not restricted to the prefrontal
cortex but included the early visual pathways reflecting
changes in the processing of reward-relevant dimensions
of visual stimuli. It is interesting to note that the reward
expectation led to changes in connectivity among re-
gions that were not themselves directly modulated by
reward expectancy. This is quite different from previous
reports that have understandably focused on changes
in connectivity among the medial and orbital frontal
regions that are also individually correlated with reward
(Cohen et al., 2005).

It is likely that the modulation of connectivity in early
feedforward connections represent top—down modula-
tion of connectivity. The dorsolateral prefrontal cortex
is a candidate region for the source of such top—down
control. Despite the finding that increased bias or ex-
pectancy did not modulate task-related activity in this
region, the network model makes clear that it does play
an important role in the distributed network governing
reward-based changes in cognition. The phenomenon
of cognitive control though changing connectivity rather
than increased focal activation has been reported pre-
viously in cued rule-based tasks (Stephan et al., 2003)
and may have been overlooked in other standard analy-
ses of imaging data.

The validity of inferences on the basis of network
models can only be as good as the models they come
from. We used DCM as the most appropriate analytic
method for our rapid event-related design. Alternative
connectivity analysis of brain activation during reward-
based behavior has been done using functional connec-
tivity analysis on the basis of interregional correlations.
This avoids the need for hypothesis-driven model spec-
ification but does not enable one to test causal relations.
In contrast, DCM relies on anatomical and other prior

information to construct specific network models with-
in which one can test causal relations between regions.
One can then draw reliable inferences about contex-
tual changes in task-related connectivity (Lee, Friston,
& Horwitz, 2006), which can be conceptualized as PPIs
(Friston et al., 2003). The DCM model’s flexibility can
also accommodate a wide range of hemodynamic re-
sponse functions that can vary between regions and
across subjects. This, together with its dynamic rather
than stationary modeling of an entire time series, made
it ideal for the analysis of rapid event-related paradigms
which are otherwise impossible for alternative methods
such as PPIs in general linear models (Friston et al.,
1997) or structural equation modeling (Penny, Stephan,
Mechelli, & Friston, 2004a). The method also allows for
model comparison, and a quantification of the degree
of confidence associated with a preferred model, using
the BIC and AIC criteria (Penny et al., 2004b). It is not
practical to test all models against each other with mul-
tiple regions and cognitive moderator terms but, fortu-
nately, the preferred model identified in this study was
strongly preferred by both measures across the group.

Limitations of the Study

The design of the SPM analysis is such that the identified
effects of reward expectation are independent of the
events that coincide with actual reward (identification
of three successive targets followed by ka-ching and
money). These latter events include reward itself and
the possible cessation of cognitive set on completion
of the goal: We cannot separate these factors. However,
the aim of the study was to understand the effect of
reward expectation as one moved through successive
target trials (cf. the reinforcement schedule of Shidara
& Richmond, 2002). There are, nonetheless, two impor-
tant caveats. First, we used a compound reward, includ-
ing money to be paid after the experiment; a salient
ka-ching cash register sound; and the personal reward
inherent in successful completion of an arbitrary task.
We cannot be certain which aspect of reward was most
relevant for the modulation of cognitive set. This con-
trasts with the monkey studies that used primary re-
inforcers such as juice to record reward-related neuronal
firing in the ACC (Shidara & Richmond, 2002, 2004), but
is similar to other human imaging studies (O’Doherty
et al., 2001, 2003). Different reward types might have
different neural mechanisms, even though there is an
apparent consensus in the literature on the importance
of the ACC.

A second caveat is the correlation of reward expecta-
tion across successive targets with top—down attentional
control. There are three possible effects here. First, that
the ACC exerts top—down control itself, as a function
of reward representation, like the “motivational map”
proposed by Mesulam (1981). This possibility has been
largely superseded by the second possibility, that the
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ACC influences top—down control by interaction with
other areas such as the dorsolateral prefrontal cortex
(Kerns et al., 2004). Third, that ACC activation we see
in association with reward expectation is due entirely
to the correlated changes in top—down control, and is
not directly related to reward representation (Johnston,
Levin, Koval, & Everling, 2007). Given the anatomical
and connectionist heterogeneity of the ACC, these pos-
sibilities may coexist, with direct attentional control ex-
erted by more dorsal-caudal regions of the ACC (Kerns
et al., 2004; Duncan & Owen, 2000; MacDonald et al.,
2000b; Botvinick, Nystrom, Fissell, Carter, & Cohen,
1999) and reward representation rostrally (O’Doherty
et al., 2001, 2003). Unfortunately, our data cannot def-
initively exclude the third possible interpretation. How-
ever, in view of the rostral location of our cluster, we
suggest that reward expectation represented in the ACC
region leads to top—down bias through its interactions
with other regions including the lateral prefrontal cortex.

Conclusion

The medial frontal cortex was found to be sensitive to
the increasing level of reward expectancy over succes-
sive trials. This led to specific but distributed changes
in terms of brain activation and connectivity, in both
the dorsal and ventral streams, that mediated the rele-
vant spatial and verbal tasks. Further work is required
to confirm the generalization of our results to other
goal-oriented cognitive processes, and the many differ-
ent types of reward that influence human behavior. For
example, there may be differential effects of monetary,
salutary, or sexual rewards. However, we suggest that
the combination of localizationist and connectionist ap-
proaches is especially informative to understand the be-
havioral effects of reward expectation through specific
distributed changes in the brain.
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